Abstract

Abstract—Potassium and norepinephrine stimulate the accumulation of cyclic AMP and cyclic GMP in rat pineal glands and their efflux into the medium. The efflux of both cyclic nucleotides was blocked by probenecid. The accumulation and efflux of cyclic GMP, but not of cyclic AMP, depends upon the presence of intact nerve endings and extracellular calcium. The calcium‐dependent release of norepinephrine caused by veratridine was accompanied by the efflux of both cyclic AMP and cyclic GMP. In contrast, the calcium‐independent release of norepinephrine caused by tyramine was accompanied by the efflux of cyclic AMP but not cyclic GMP. Changes in cyclic GMP therefore, may be related to exocytosis from the sympathetic nerve endings in the gland. High concentrations of potassium also increased tissue levels of cyclic GMP in the posterior pituitary gland. Veratridine and potassium, but not norepinephrine, stimulated the efflux of cyclic GMP from this neurosecretory gland. Thus, the relationship between cyclic GMP and exocytosis may extend beyond sympathetic nerve endings. The enhanced accumulation of cyclic GMP in the pineal gland after potassium does not appear to be mediated by extracellular (released) norepinephrine. Desmethylimipramine blocked the norepinephrine‐stimulated changes in cyclic GMP, but not those caused by potassium. Investigation of the possible relationship between cyclic GMP and release of neurotransmitters is complicated by the apparent seasonal variation in the response of pineal cyclic GMP to potassium or norepinephrine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call