Abstract
Maintenance of skeletal muscle energy status during hibernation in ground squirrels,Spermophilus lateralis,was accompanied by a decrease in Na+K+-ATPase pump activity. Energy charge was maintained (0.89) during hibernation at the expense of total adenylates (decreased by 41%). Muscle Na+K+-ATPase activity was 9.1 U/mg protein in euthermic controls but decreased by 60% during hibernation. Enzyme activity was similarly suppressedin vitrowhen extracts of control muscle were incubated with ATP plus second messengers of protein kinases A, G or C whereas stimulation of protein phosphatases in muscle extracts from hibernators increased Na+K+-ATPase activity. Additional studies confirmed that suppression and reactivation of the enzyme in euthermic muscle extracts can be achieved with protein kinase A and alkaline phosphatase treatments, respectively, and indicated that phosphorylation changes the ATP dependency of the enzyme. Thus, hibernation-induced suppression of Na+K+-ATPase activity in muscle and other organs of ground squirrels, which is a key part of the overall suppression of metabolic rate that constitutes torpor, appears to be regulated via reversible protein phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.