Abstract

Interleukin-17 (IL-17) has been previously reported to induce stromal cells to produce a number of hematopoietic and proinflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF). Here, we have evaluated the mechanisms responsible for the augmentation of G-CSF gene expression by IL-17, using the murine 3T3 fibroblast cell line. Treatment of 3T3 cells, but not primary bone marrow-derived macrophages or murine monocyte/macrophage cell lines, resulted in increased steady-state G-CSF mRNA levels within 2–4 h and augmented G-CSF protein production. The combination of IL-17 and LPS enhanced G-CSF expression in an additive fashion. Stability studies revealed that IL-17 stabilized G-CSF mRNA levels, with a t 1/2 of 4 h, compared to a t 1/2 of less than 2 h in medium or LPS-treated cells. Induction of G-CSF expression in 3T3 cells by IL-17 did not appear to require tyrosine kinase activation or de novo protein synthesis. These studies indicate that post-transcriptional mechanisms play an important role in IL-17-induced G-CSF expression in fibroblasts and suggest that IL-17 may be useful for further delineating mechanisms of G-CSF gene regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.