Abstract

The glycolytic enzymes glycogen phosphorylase, phosphofructokinase (PFK), and pyruvate kinase (PK) were assessed in liver, heart, red muscle, and white muscle of aerobic and 5-h anoxic turtles (Pseudemys scripta) for changes in total activity and kinetic parameters. Anoxia induced statistically significant changes in these glycolytic enzymes in each of the four organs assayed. Compared with normoxic controls, anoxic liver showed a 3.3-fold increase in glycogen phosphorylase activity, a 1.5-fold increase in the PFK I50 value for citrate (concentration that inhibits initial activity by 50%), a 1.5-fold increase in the PFK Michaelis constant (Km) value for fructose 6-phosphate (P), and an increased maximal activity of PK. Anoxic heart muscle showed a 2.6-fold decrease in glycogen phosphorylase activity and, for PFK, a 1.7-fold decrease in the Km value for ATP and a twofold increase in the I50 value for citrate. In anoxic white muscle, PFK showed a fivefold lower Km value for fructose-6-P and a threefold lower activator concentration producing half-maximal activation (A50) for potassium phosphate than the aerobic enzyme form. Changes in anoxic white muscle PK included a twofold increase in the Km value for ADP and a 1.7-fold decrease in the I50 value for alanine. In red muscle, anoxia affected only the Km value for ATP, which was 50% higher than the value for the aerobic enzyme form. Fructose 2,6-diphosphate (P2) levels also decreased in heart muscle and increased in red and white muscle during anoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.