Abstract
The interaction of glycogen concentration, insulin and beta-adrenergic stimulation in the regulation of glycogen breakdown was studied in perfused rat muscles. Rats were pre-conditioned to obtain two groups with either normal (N) or 'supercompensated' (SC) muscle glycogen. The next day their hindlimbs were perfused with a medium containing insulin (0, 40 and 100 microU mL(-1)) and/or isoproterenol (0 and 1.5 nmol L(-1)). Contractions were induced by electrical stimulation of the sciatic nerve. Compared with N, glycogen breakdown in white gastrocnemius during contractions was greater in SC at any hormonal combination (P < 0.05). Conversely, in red gastrocnemius (RG) the higher glycogenolytic rate in SC, compared with N, faded as the insulin concentration was raised from 0 to 100 microU mL(-1). However, isoproterenol restored the higher glycogenolytic rate in SC. In any condition, RG glycogen synthase fractional activity was lower (P < 0.05) during contractions in SC than in N. Furthermore, the percentage of phosphorylase a was higher in SC except when muscles were exposed to insulin alone. In conclusion, high initial glycogen concentration in fast-glycolytic muscle causes high glycogenolytic rate during contractions, irrespective of hormonal stimulation. In contrast, due to down-regulation of phosphorylase activity, such a relationship does not exist in insulin-stimulated fast-oxidative muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.