Abstract

Abstract. Chlamydomonas pulsatilla rapidly adjusts its level of osmoregulatory solute, glycerol, when exposed to increased (upshock) or decreased (downshock) salinities. Rates of degradation, or loss, of glycerol are similar in light and dark, while rates of net synthesis proceed about 20% faster in the light than in the dark. Synthesis of glycerol in the dark is correlated with degradation of starch, and starch appears also to be utilized for glycerol synthesis in response to extensive salinity upshocks in the light, where photosynthesis is strongly inhibited. Under conditions of moderate upshocks in the light, photosynthesis is not affected, and net increases in both glycerol and starch were observed. Glycerol turnover takes place both under iso‐osmotic conditions, and during period of adjustments to osmotic downshocks, where there is a rapid net decrease in the glycerol pool. Half times for glycerol turnover were estimated from rates of incorporation of photoassimilated 14C into glycerol and glycerol pool sizes to be 20 and 74 min for cells incubated at 50 and 100% artificial seawater, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.