Abstract
Glutamine is synthesized in skeletal muscle, released to the circulation, and transported to other tissues, where it may provide important substrate for gluconeogenesis, ammoniagenesis, and energy-yielding pathways. With the ultimate goal of delineating the factors that control glutamine production and release by skeletal muscle, we have studied the regulation of two key enzymes, glutamine synthetase and glutaminase, in the L6 line of rat skeletal muscle cells grown in monolayer culture. The cultured myotubes were found to have glutamine synthetase and phosphate-dependent glutaminase activities. Glutamine synthetase activity was increased following incubation (1) in glutamine-free medium (threefold); (2) in medium containing high glutamic acid concentrations (fourfold); and (3) in medium supplemented with dexamethasone (threefold). In each case the increase in glutamine synthetase activity required several hours to reach a maximum and was prevented by cycloheximide, suggesting that the change occurred through increased enzyme biosynthesis. No substances tested were found to affect glutaminase activity. We conclude that glutamine synthetase in cultured skeletal muscle is responsive to substrate, product, and hormonal regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.