Abstract

Members of the PKC (protein kinase C) superfamily play key regulatory roles in glucose transport. How the different PKC isotypes are involved in the regulation of glucose transport is still poorly defined. PMA is a potent activator of conventional and novel PKCs and PMA increases the rate of glucose uptake in many different cell systems. In the present study, we show that PMA treatment increases glucose uptake in 3T3-L1 adipocytes by two mechanisms: a mitogen-activated protein kinase kinase-dependent increase in GLUT1 (glucose transporter 1) expression levels and a PKClambda-dependent translocation of GLUT1 towards the plasma membrane. Intriguingly, PKClambda co-immunoprecipitated with PKCbeta(II) and did not with PKCbeta(I). Previously, we have described that down-regulation of PKCbeta(II) protein levels or inhibiting PKCbeta(II) by means of the myristoylated PKCbetaC2-4 peptide inhibitor induced GLUT1 translocation towards the plasma membrane in 3T3-L1 adipocytes. Combined with the present findings, these results suggest that the liberation of PKClambda from PKCbeta(II) is an important factor in the regulation of GLUT1 distribution in 3T3-L1 adipocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call