Abstract
Lactate production by BHK cells is stimulated by arsenite, azide, or by infection with Semliki Forest virus (SFV). In the case of arsenite or SFV infection, the increase correlates approximately with the increase in glucose transport as measured by uptake of [3H] deoxy glucose (dGlc); in the case of azide, the increase in lactate production exceeds that of glucose transport. Hence glucose utilization by BHK cells and its stimulation by anaerobic and other types of cellular stress is controlled at least in part at the level of glucose transport. The glucose uptake by BHK cells is also stimulated by serum and by glucose deprivation. In these circumstances, as with arsenite, stimulation is reversible, with t1/2 of 1-2 hours; stimulation is compatible with a translocation of the glucose transporter protein between an intracellular site and the plasma membrane (shown here for serum and previously for arsenite). The surface binding and rate of internalization of [125I]-labelled transferrin and [125I] alpha 2-macroglobulin was studied to determine whether changes in glucose transport are accompanied by changes in the surface concentration or rate of internalization of membrane proteins. The findings indicate that changes in glucose transport do not reflect a consistent and general redistribution of membrane receptors. Taken together, the results are compatible with the proposal that BHK cells exposed to stimuli like insulin or serum, or to stresses like arsenite, azide, SFV infection, or deprivation of glucose, respond in the same manner: namely, by an increased capacity to transport glucose brought about by reversible and specific translocation of the transporter protein from an (inactive) intracellular site to the plasma membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Cellular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.