Abstract

The photochromic reactivity of terarylenes is integrated with molecular folding that is controlled through a host-guest interaction. A thieno[3,2,b]pyridine unit is introduced into a photochromic terarylene structure as an aryl unit to form a guest-interacting site. Thienopyridine-containing terarylenes showed solvent-dependent photochromic reactivity in solution. A terarylene moiety that contains two thienopyridyl units showed significantly high photocoloration reactivity as high as 88% of photocyclization quantum yield in methanol, whereas that value was only 24% in hexane. A temperature-dependent (1)H NMR spectroscopic study in different solvents indicated an interconversion between photochromic-reactive and unreactive conformations. In methanol, the intermolecular interaction between terarylene species and the solvent molecule slows the rate of interconversion and increases the population of the photochromic-active form, whereas the unreactive conformation is dominant in hexane. Crystal-structural studies demonstrated the perfect regulation of molecular folding between a photochromic-active form and an unreactive conformation by changing the solvents for recrystallization. Single crystals prepared from solutions in methanol showed reversible photochromic reactivity, whereas recrystallization from solutions in hexane did not show this reactivity. X-ray crystallographic studies of single crystals from solutions in methanol demonstrated that the photochromic molecules bind a solvent methanol molecule at the guest-interacting site to regulate the molecular conformation into a photochromic-active form in collaboration with specific intramolecular interactions, whereas crystals from solutions in hexane possess the photochromic-unreactive conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call