Abstract

Physiological studies have demonstrated that flagellar radial spokes regulate inner arm dynein activity in Chlamydomonas and that an axonemal cAMP-dependent kinase inhibits dynein activity in radial spoke defective axonemes. These studies also suggested that an axonemal protein phosphatase is required for activation of flagellar dynein. We tested whether inhibitors of protein phosphatases would prevent activation of dynein by the kinase inhibitor PKI in Chlamydomonas axonemes lacking radial spokes. As predicted, preincubation of spoke defective axonemes (pf14 and pf17) with ATP gamma S maintained the slow dynein-driven microtubule sliding characteristic of paralyzed axonemes lacking spokes, and blocked activation of dynein-driven microtubule sliding by subsequent addition of PKI. Preincubation of spoke defective axonemes with the phosphatase inhibitors okadaic acid, microcystin-LR or inhibitor-2 also potently blocked PKI-induced activation of microtubule sliding velocity: the non-inhibitory okadaic acid analog, 1-norokadaone, did not. ATP gamma S or the phosphatase inhibitors blocked activation of dynein in a double mutant lacking the radial spokes and the outer dynein arms (pf14pf28). We concluded that the axoneme contains a type-1 phosphatase required for activation of inner arm dynein. We postulated that the radial spokes regulate dynein through the activity of the type-1 protein phosphatase. To test this, we performed in vitro reconstitution experiments using inner arm dynein from the double mutant pf14pf28 and dynein-depleted axonemes containing wild-type radial spokes (pf28). As described previously, microtubule sliding velocity was increased from approximately 2 microns/second to approximately 7 microns/second when inner arm dynein from pf14pf28 axonemes ws reconstituted with axonemes containing wild-type spokes. In contrast, pretreatment of inner arm dynein from pf14pf28 axonemes with ATP gamma S, or reconstitution in the presence of microcystin-LR, blocked increased velocity following reconstitution, despite the presence of wild-type radial spokes. We conclude that the radial spokes, through the activity of an axonemal type-1 phosphatase, activate inner arm dynein by dephosphorylation of a critical dynein component. Wild-type radial spokes also operate to inhibit the axonemal cAMP-dependent kinase, which would otherwise inhibit axonemal dynein and motility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call