Abstract

Hamster sperm were immotile in the medium at free Ca2+ concentrations ([Ca2+]) below 1 x 10(-4) M. The flagellum was acutely bent in the opposite direction to the curve of the hook-shaped heads. This phenomenon seemed to be caused by the decrease in the intracellular cAMP concentration, since the cAMP concentration was low at [Ca2+] below 1 x 10(-4) M and increased abruptly at 1 x 10(-3) M, at which sperm were swimming actively. In addition, sperm became motile due to treatment with 8-bromo-cAMP, a membrane permeable analogue of cAMP, in a medium without Ca2+. These results suggested that extracellular Ca2+ is involved in the regulation of flagellar movement via increasing intracellular cAMP concentration. By the treatment with W-13, a calmodulin inhibitor, sperm also became motile, although cAMP concentration remained at a low level. These results suggested that cAMP is not always required for the flagellar movement when the function of calmodulin is depressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call