Abstract

The rat serine protease inhibitor 2.3 gene (spi 2.3) is almost completely silent in normal animals and is transiently expressed during acute inflammation. It encodes a potential anti-elastase which is likely to play a major physiological role for the host defense. Two well-known inflammatory mediators, glucocorticoids and interleukin-6 (IL-6) activate the spi 2.3 promoter and increase steady-state levels of mRNA in cultured hepatocytes. GC activation is mediated by a single glucocorticoid-response element which seems to act autonomously. A unique array of four functional IL-6-response sites was identified in the spi 2.3 promoter. Three of them (C-II--IV) bear structural identity to the CCAAT/enhancer-binding-protein-binding site consensus sequence, whereas the fourth closely resembles the consensus kappa B nuclear factor recognition motif. The C-IV element, which is the most active, contains the motif 5'-CTGGGA and binds the IL-6-inducible acute-phase response factor present in liver nuclear extracts from inflamed rats. Both basal and IL-6-dependent activities of each individual cytokine-response element tested separately are strongly down regulated by a recently identified regulatory sequence, located in the 3' untranslated region of the spi 2.3 gene. However, this repressor element does not significantly affect overall IL-6-dependent spi 2.3 promoter activity. This suggests that, in the context of the active gene in vivo, all four IL-6-response sites, which are largely redundant, cooperate to overcome the strong repressive effect of the 3' untranslated region silencer and are needed to bring about a maximal IL-6 response. These data reveal a novel type of regulation of an acute-phase gene involving different classes of IL-6-response elements controlled by a repressor and acting in conjunction with a glucocorticoid-response element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call