Abstract

Synaptotagmin (syt) serves as a Ca(2+) sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca(2+), but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca(2+) triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call