Abstract

Adenosine-regulated glutamate signaling in astrocytes is implicated in many neurological and neuropsychiatric disorders. In this study, we examined whether adenosine A1 receptor regulates EAAT2 expression in astrocytes using pharmacological agents and siRNAs. We found that adenosine A1 receptor-specific antagonist DPCPX or PSB36 decreased EAAT2 expression in a dose-dependent manner. Consistently, knockdown of A1 receptor in astrocytes decreased EAAT2 mRNA expression while overexpression of A1 receptor upregulated EAAT2 expression and function. Since A1 receptor activation is mainly coupled to inhibitory G-proteins and inhibits the activity of adenylate cyclase, we investigated the effect of forskolin, which activates adenylate cyclase activity, on EAAT2 mRNA levels. Interestingly, we found that forskolin reduced EAAT2 expression in dose- and time-dependent manners. In contrast, adenylate cyclase inhibitor SQ22536 increased EAAT2 expression in dose- and time-dependent manners. In addition, forskolin blocked ethanol-induced EAAT2 upregulation. Taken together, these results suggest that A1 receptor-mediated signaling regulates EAAT2 expression in astrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.