Abstract

Expression of the erbB-2 oncogene in breast cancer patients correlates with poor prognosis and failure of hormonal therapy. In this study, the effects of a putative erbB/HER ligand, gp30, on estrogen receptor (ER) concentration and activity was investigated in the estrogen receptor positive human breast cancer cells, BT474 and MCF-7, which express either high or low levels of erbB-2 and erbB-4, respectively. Treatment of cells with gp30 resulted in a decrease in the steady-state level of estrogen receptor protein by approximately 70-80%. The effect of gp30 on the concentration of ER was independent of serum in the media and was not inhibited by an epidermal growth factor receptor blocking antibody. In addition to the effect on ER protein, gp30 decreased the steady-state level of ER messenger RNA. Transcription run on experiments demonstrated that the decrease in ER expression was mediated by a decrease in ER gene transcription. The effect of gp30 on estrogen receptor activity was also investigated in this study. Treatment of cells with gp30 blocked estradiol induction of progesterone receptor. Inhibition was observed at the level of progesterone receptor protein, messenger RNA, and gene transcription. gp30 also blocked estradiol induction of pS2 gene transcription. In addition to its effects on progesterone receptor and pS2, gp30 blocked activation of an estrogen response element in a transient transfection assay and inhibited ER binding to its response element in a DNA mobility shift assay, suggesting a direct effect on the estrogen receptor. The effects of gp30 on estrogen receptor concentration and activity were independent of the level of erbB-2 and erbB-4 in the cell. These data show that gp30 regulates the concentration of ER and modulates ER activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.