Abstract

Thermal and solar energies are two pivotal components in photothermal catalysis, however, their synergistic energy efficiency for a maximum yield is more important but less investigated. Herein, systematic studies unveil the promotion effects of external heat on the excitation and utilization of energetic hot carriers (EHC) on Pt/TiO2 in photothermal catalysis. Onset reaction temperature of a reaction is found to be the key in control of the energy synergy. When the minimum onset reaction temperature of uphill processes is exceeded, a smaller number of active sites on the catalyst are available to EHC, resulting in a suppressed thermal effect. Rational regulation of EHC and thermal energy in photothermal catalysis leads to optimum quantum efficiencies of both dry reforming of methane and reverse water-gas shift reactions at a medium level of temperature. This work provides new insights to balance thermal and solar-driven catalysis to better conduct photothermal catalysis for fossil fuels upgrading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call