Abstract

ObjectiveEndothelial lipase (EL) regulates HDL cholesterol levels and in inflammatory states, like atherosclerosis, EL expression is increased contributing to low HDL cholesterol. The regulation of EL expression is poorly understood and has mainly been attributed to inflammatory stimuli. As sterol regulatory element binding proteins (SREBPs) are regulators of genes involved in lipid metabolism, we hypothesized that EL is regulated by SREBPs and that EL expression is modified by the SREBP activator vascular endothelial growth factor A (VEGF-A). Methodsand results: Quantitative PCR and Western blot results demonstrated that starvation increased EL expression in human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Also, 25-hydroxycholesterol (25HC), an inhibitor of SREBP activation inhibited EL expression. With siRNA-mediated inhibition of SREBPs the effect of starvation was shown to be SREBP-2 dependent. VEGF-A decreased EL expression in both endothelial cell lines used, most likely via inhibition of SREBP-2 binding determined by chromatin immunoprecipitation (ChIP). Furthermore, in atherosclerosis prone LDLR−/−ApoB100/100 mice, systemic adenoviral gene transfer with human VEGF-A decreased EL mRNA in peripheral tissues and increased plasma HDL cholesterol. ConclusionsThese results identify SREBPs as novel regulators of EL expression. VEGF-A as an endogenous EL inhibitor could be therapeutically relevant in atherosclerosis by increasing systemic HDL cholesterol levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.