Abstract

BackgroundOptineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-κB regulation, signal transduction and gene expression. Mutations in optineurin are associated with glaucoma, a neurodegenerative eye disease that causes blindness. Genetic evidence suggests that the E50K (Glu50Lys) is a dominant disease-causing mutation of optineurin. However, functional alterations caused by mutations in optineurin are not known. Here, we have analyzed the role of optineurin in endocytic recycling and the effect of E50K mutant on this process.ResultsWe show that the knockdown of optineurin impairs trafficking of transferrin receptor to the juxtanuclear region. A point mutation (D474N) in the ubiquitin-binding domain abrogates localization of optineurin to the recycling endosomes and interaction with transferrin receptor. The function of ubiquitin-binding domain of optineurin is also needed for trafficking of transferrin to the juxtanuclear region. A disease causing mutation, E50K, impairs endocytic recycling of transferrin receptor as shown by enlarged recycling endosomes, slower dynamics of E50K vesicles and decreased transferrin uptake by the E50K-expressing cells. This impaired trafficking by the E50K mutant requires the function of its ubiquitin-binding domain. Compared to wild type optineurin, the E50K optineurin shows enhanced interaction and colocalization with transferrin receptor and Rab8. The velocity of Rab8 vesicles is reduced by co-expression of the E50K mutant. These results suggest that the E50K mutant affects Rab8-mediated transferrin receptor trafficking.ConclusionsOur results suggest that optineurin regulates endocytic trafficking of transferrin receptor to the juxtanuclear region. The E50K mutant impairs trafficking at the recycling endosomes due to altered interactions with Rab8 and transferrin receptor. These results also have implications for the pathogenesis of glaucoma caused by the E50K mutation because endocytic recycling is vital for maintaining homeostasis.

Highlights

  • Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-B regulation, signal transduction and gene expression

  • Optineurin is required for trafficking of transferrin receptor We examined the role of optineurin in trafficking of TfR, which has served as a model system for the study of endocytic recycling

  • These results suggest that optineurin is required for the trafficking of TfR to the juxtanuclear region

Read more

Summary

Introduction

Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-B regulation, signal transduction and gene expression. Optineurin is a multifunctional protein involved in a variety of functions such as vesicular trafficking from the Golgi to the plasma membrane, Golgi ribbon formation, signaling by metabotropic glutamate receptor, regulation of NF-B activation and gene expression [1,2,3,4,5,6]. Huntingtin, a protein mutated in the neurodegenerative Huntington’s disease, is localized to the Golgi complex, and to the endocytic and exocytic vesicles, where it plays a role in membrane trafficking pathways [14,25,26]. The role of optineurin in endocytic membrane traffic has not been examined

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call