Abstract

Superhydrophobic surfaces have shown great application prospects due to their excellent water repellency in many applications involving fluid–surface interactions. As a ubiquitous fluid–surface interaction phenomenon, droplet impacting dynamics has a crucial effect on the application of superhydrophobic surfaces. In this Perspective, we summarize the basic process of droplet impacting on superhydrophobic surfaces and introduce the two most concerned parameters that describe the droplet impacting dynamics, i.e., the maximum spreading coefficient and the contact time. We then review two improvement strategies for superhydrophobic surfaces: one is to construct macrostructures and the other is to set wettability patterns on the surface. The former strategy shows great potential in reducing the droplet contact time, and the latter one can accurately regulate the behavior of impacting droplets. The motion of superhydrophobic surfaces also changes the droplet impacting dynamics due to the additional aerodynamic effect or energy input, which arouses attention recently. However, only the individual influence of each factor (e.g., macrostructures, wettability patterns, or surface motion) on the droplet impacting dynamics has been focused in literature, so we write this Perspective to emphasize the importance and urgency of studying the coupled effects of these three factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call