Abstract
As precursors of platelets, megakaryocytes must fulfil the complex tasks of protein synthesis and platelet assembly. Megakaryocytic dysfunction can lead to neoplastic disorders, such as acute megakaryoblastic leukaemia, an entity with a 500-fold increased incidence in children with Down syndrome (DS). Down Syndrome Critical Region 1 (DSCR1), a member of the calcipressin family of calcineurin inhibitors, is overexpressed in DS, and destabilization of the calcineurin/Nuclear Factor of Activated T cells (NFAT) pathway by overexpression of DSCR1 has been implicated in some of the pathophysiological features of the disease. The roles of NFAT and DSCR1 in megakaryocyte signalling and gene expression, however, are unknown. In this study, we show that calcineurin and NFAT are components of a calcium-induced signalling cascade in megakaryocytes. NFAT activation in megakaryocytes was induced by fibrillar collagen type I and was completely sensitive to the calcineurin inhibitor cyclosporin A. We established DSCR1 as a calcium-induced NFAT target gene in these cells and show that overexpression of DSCR1 in megakaryocytes strongly inhibits NFAT activation as well as NFAT-dependent expression of the Fas ligand gene (FASLG). These results suggest that DSCR1 acts as an endogenous feedback inhibitor of NFAT signalling in megakaryocytes, and may have implications for megakaryocytic gene expression in DS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.