Abstract

In many fishes, dopamine (DA) strongly inhibits luteinizing hormone (LH) release by direct action at the pituitary level. In this study, the effect of DA on LH synthesis was examined by detecting its β-subunit mRNA level in immature grass carp pituitary cells. Results showed that DA inhibited LHβ mRNA expression and its inhibition was antagonized by a DA D2 receptor (DRD2) antagonist, sulpiride, suggesting that DA inhibited LH synthesis via DRD2. This notion was further supported by the finding that the grass carp DRD2 (gcDRD2) immunoreactivity was observed in the proximal pars distalis of the pituitary in which gonadotrophs are distributed. Accordingly, a full-length cDNA for DRD2 was cloned from grass carp pituitary and it showed closer phylogenetic relationships to the DA D2 receptors compared with the D3 and D4 or D1-like receptors in other vertebrates. Besides brain, the expression of this receptor in pituitary was revealed by tissue distribution assay, implying the pituitary function of gcDRD2 in immature grass carp. In grass carp pituitary cells, gcDRD2 transcript level was stimulated by DA and this stimulation was blocked by sulpiride. However, hCG, a functional homolog of grass carp LH, was found to inhibit gcDRD2 mRNA expression, indicating an intrapituitary negative feedback of LH on gcDRD2 expression. In view of our observation that the DRD2 mediated the dopaminergic inhibition of LH synthesis, we speculate that the DA stimulation and LH suppression on gcDRD2 may reinforce or attenuate the DA inhibition on LH synthesis, respectively and this regulation of gcDRD2 may at least partially contribute to the steady state levels of LH mRNA in prepubertal grass carp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.