Abstract

Embryonic diapause is an evolutionary strategy to ensure that offspring are born when maternal and environmental conditions are optimal for survival. In many species of carnivores, obligate embryonic diapause occurs in every gestation. In mustelids, the regulation of diapause and reactivation is influenced by photoperiod, which then acts to regulate the secretion of pituitary prolactin. Prolactin in turn regulates ovarian steroid function. Reciprocal embryo transplant studies indicate that this state of embryonic arrest is conferred by uterine conditions and is presumed to be due to a lack of specific factors necessary for continued development. Studies of global gene expression in the mink (Neovison vison) revealed reduced expression of a cluster of genes that regulate the abundance of polyamines in the uterus during diapause, including the rate-limiting enzyme in polyamine production, ornithine decarboxylase (ODC). In addition, in this species, in vivo inhibition of the conversion of ornithine to the polyamine, putrescine, induces a reversible arrest in embryonic development and an arrest in both trophoblast and inner cell mass proliferation in vitro. Putrescine, at 0.5, 2 and 1,000μM concentrations induced reactivation of mink embryos in culture, indicated by an increase in embryo volume, observed within five days. Further, prolactin induces ODC1 expression in the uterus, thereby regulating uterine polyamine levels. These results indicate that pituitary prolactin acts on ovarian and uterine targets to terminate embryonic diapause. In summary, our findings suggest that the polyamines, with synthesis under the control of pituitary prolactin, are the uterine factor whose absence is responsible for embryonic diapause in mustelid carnivores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call