Abstract

The dendritic arbors of neurons are organized into unique spatial patterns that are well suited for their specific functions. Although the intracellular signaling pathways that determine dendritic arbor size and branching patterns during development are not completely understood, it is evident that neurotransmission-mediated elevation in intracellular calcium levels ([Ca 2+] i) plays a major role. Recent advances in calcium imaging and genetic approaches have provided new insight into how calcium acts to regulate dendritic growth and remodeling. Global increases in [Ca 2+] i that occur upon neuronal depolarization control dendritic arbor growth by regulating transcription. However, the detailed branching patterns of dendritic arbors are regulated by local calcium signaling. Calcium-induced calcium release (CICR) from intracellular stores acts to locally stabilize dendritic branches, presumably triggered by neurotransmission upon contact with newly established inputs. The effects of global and local increases in [Ca 2+] i on dendritic structure are cell type- and age-dependent. Unraveling the signaling pathways evoked by local and global rises in [Ca 2+] i that shape the developing dendritic arbor at each developmental stage remains challenging but highly important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.