Abstract

To determine the beta1/beta3 integrin-mediated pathways that regulate cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells. CLANs form in glaucomatous and steroid-treated TM cells, which may contribute to reducing outflow facility through the TM. Expression of CD47 (an alphavbeta3 integrin coreceptor/thrombospondin-1 receptor) and integrins alphavbeta3 and beta1 was assessed by FACS. CLANs were induced by plating cells on fibronectin (a beta1 integrin ligand) in the absence or presence of the beta3 integrin-activating mAb AP-5 and were identified by phalloidin labeling. The role of Src kinases, PI-3 kinase (PI-3K), Rac1, and CD47 was determined by incubating cells with the inhibitors PP2 and EPA (Src kinases), LY294002 (PI-3K), or NSC23766 (Rac1). Tiam1 and Trio siRNAs and dominant-negative Tiam1 were used to determine which Rac1-specific guanine nucleotide exchange factor was involved. The role of CD47 was determined using the thrombospondin-1-derived agonist peptide 4N1K and the CD47 function blocking antibody B6H12.2. HTM cells expressed CD47 and integrins alphavbeta3 and beta1. beta3 Integrin or CD47 activation significantly increased CLAN formation over beta1 integrin-induced levels, whereas anti-CD47 mAb B6H12.2 inhibited this increase. PP2, NSC23766, and Trio siRNA decreased beta3-induced CLAN formation by 72%, 45%, and 67%, respectively, whereas LY294002 and dominant negative Tiam1 had no effect. LY294002 decreased beta1 integrin-mediated CLAN formation by 42%, and PP2 completely blocked it. Distinct beta1 and alphavbeta3 integrin signaling pathways converge to enhance CLAN formation. beta1-Mediated CLAN formation was PI-3K dependent, whereas beta3-mediated CLAN formation was CD47 and Rac1/Trio dependent and might have been regulated by thrombospondin-1. Both integrin pathways were Src dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.