Abstract

The Ca(2+)-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca(2+)-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of cullin-1 (Cul1) and stabilization of p27(Kip1) - molecular events that are associated with CSN activity. The knockdown of tescalcin led to an increase in Cul1 deneddylation, expression of F-box protein Skp2 and the transcription factor c-Jun, whereas the levels of cell cycle regulators p27(Kip1) and p53 decreased. These effects are consistent with the hypothesis that tescalcin might play a role as a negative regulator of CSN activity towards Cul1 in the process of induced cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.