Abstract

Gap junctions are specialized cell–cell junctions that directly link the cytoplasm of neighboring cells. They mediate the direct transfer of metabolites and ions from one cell to another. Discoveries of human genetic disorders due to mutations in gap junction protein (connexin [Cx]) genes and experimental data on connexin knockout mice provide direct evidence that gap junctional intercellular communication is essential for tissue functions and organ development, and that its dysfunction causes diseases. Connexin-related signaling also involves extracellular signaling (hemichannels) and non-channel intracellular signaling. Thus far, 21 human genes and 20 mouse genes for connexins have been identified. Each connexin shows tissue- or cell-type-specific expression, and most organs and many cell types express more than one connexin. Connexin expression can be regulated at many of the steps in the pathway from DNA to RNA to protein. In recent years, it has become clear that epigenetic processes are also essentially involved in connexin gene expression. In this review, we summarize recent knowledge on regulation of connexin expression by transcription factors and epigenetic mechanisms including histone modifications, DNA methylation, and microRNA. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.