Abstract
The distinctive contractile and metabolic characteristics of different skeletal muscle fiber types are associated with different protein populations in these cells. In the present work, we investigate the regulation of concentrations of three glycolytic enzymes (aldolase, enolase, glyceraldehyde-3-phosphate dehydrogenase) and creatine-phosphate kinase in “fast-twitch” (breast) and “slow-twitch” (lateral adductor) muscles of the chicken. Results of short-term amino acid incorporation experiments conducted both in vivo and with muscle explants in vitro showed that these enzymes turnover at different rates and that aldolase turns over 2 to 3 times faster than the other three enzymes. However, these differences in turnover rates were difficult to detect in long-term double-isotope incorporation experiments, presumably because extensive reutilization of labeled amino acids occurred during these long-term experiments. Mature muscle fibers synthesize these four cytosolic enzymes at very high rates. For example, 11 to 14% of the total labeled leucine incorporated into protein by breast muscle fibers was found in the enzyme aldolase. Results of short-term amino acid incorporation experiments also showed that the relative rates of synthesis of the three glycolytic enzymes were about fourfold higher in mature “fast-twitch” muscle fibers than in mature “slow-twitch” ones while the relative rates of synthesis of creatine-phosphate kinase were similar in the two fiber types. The relative rates of synthesis of these four enzymes and cytosolic proteins in general were found to be very similar in immature muscles of both types. More profound changes in the relative rates of synthesis of major cytosolic proteins, including the glycolytic enzymes, occurred during postembryonic maturation of fast-twitch fibers than occurred during maturation of slow-twitch fibers. Our work demonstrates that (1) the synthesis of creatine-phosphate is independently regulated with respect to the synthesis of the glycolytic enzymes in muscle fibers; and (2) the approximate fourfold higher steady-state concentrations of glycolytic enzymes in fast-twitch muscle fibers as compared with slow-twitch fibers are determined predominantly by regulatory mechanisms operating at the level of protein synthesis rather than protein degradation. Our demonstration that more profound changes in the relative rates of synthesis of major cytosolic proteins occur during maturation of fast-twitch fibers as compared with slow-twitch fibers is discussed in terms of the mode(s) of fiber-type differentiation proposed by others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.