Abstract

IntroductionPatients with acute myeloid leukemia (AML) are at increased risk of thrombohemorrhagic complications. Overexpressed tissue factor (TF) on AML blasts contributes to systemic coagulation activation. We have recently shown that the heme enzyme myeloperoxidase (MPO) negatively regulates TF procoagulant activity (PCA) on myelomonocytic cells in vitro. We now aimed to further characterize the functional interaction of MPO and TF in AML in vivo. MethodsWe prospectively recruited 66 patients with newly diagnosed AML. TF PCA of isolated peripheral blood mononuclear cells (PBMC) was assessed by single-stage clotting assay in the presence or absence of inhibitors against MPO catalytic activity (ABAH) or against MPO-binding integrins (anti-CD18). MPO in plasma and in AML blasts was measured by ELISA, and plasma D-dimers and prothrombin fragment F1+2 were quantified by automated immunoturbidimetric and chemiluminescence assays, respectively. ResultsPatients with AML had significantly higher MPO plasma levels compared to healthy controls and exhibited increased levels of D-dimers and F1+2. In vivo thrombin generation was mediated by TF PCA on circulating PBMC. Ex vivo incubation of isolated PBMC with ABAH or anti-CD18 antibody resulted in either increased or decreased TF PCA. The strong and robust correlation of F1+2 with TF PCA of circulating PBMC was abrogated at MPO plasma levels higher than 150 ng/mL, indicating a modulatory role for MPO on TF-mediated in vivo thrombin generation above this threshold. ConclusionOur study indicates that catalytically active MPO released by circulating myeloblasts regulates TF-dependent coagulation in patients with newly diagnosed AML in a CD18-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call