Abstract

A Triton-extracted model of Paramecium swims forwards when the Ca2+ concentration in the reactivation medium containing ATP is below 10(-6) M and swims backwards when Ca2+ concentration is above 10(-6) M. We found that cAMP (adenosine 3':5'-cyclic monophosphoric acid) inhibited Ca-induced backward swimming of the model and caused forward swimming even when the [Ca2+] was above 10(-6) M. This effect of cAMP was abolished by an inhibitor of cAMP-dependent protein kinase. In order to study the possible role of phosphorylation in the regulation of ciliary orientation, ATP in the reactivation medium was replaced by an ATP analogue, ARP gamma S (adenosine 5'-O-3-thiotriphosphate), which irreversibly thiophosphorylates proteins. In ATP gamma S medium, the model ceased both swimming and ciliary beating, but the orientation of cilia was dependent on [Ca2+]. At low [Ca2+], cilia were perpendicular to the cell surface and, with increase in [Ca2+], their orientation gradually changed towards the cell anterior. Such a change in ciliary orientation corresponds roughly to the change in the swimming direction observed in ATP medium. The ciliary orientation towards the anterior of the cell in ATP gamma S medium at high [Ca2+] was maintained when [Ca2+] was decreased. In contrast, in ATP medium, the swimming direction was reversibly changed with changes in [Ca2+]. These results suggest that the ciliary orientation is regulated not only by Ca2+ but also by cAMP, probably via protein phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.