Abstract

Ciliary neurotrophic factor (CNTF) is a pleiotropic cytokine which is detectable only at very low levels in the intact adult rat CNS, but following an aspirative lesion to the dorsal hippocampus and overlying cortex, CNTF mRNA levels are dramatically up-regulated in reactive astrocytes. In cultured rat hippocampal astrocytes, CNTF mRNA levels are high, similar to the levels in reactive astrocytes in vivo, but are strongly suppressed after administration of isoproterenol and forskolin, which stimulate the production of intracellular cyclic AMP, induced marked morphological change in the astrocytes and up-regulate glial fibrillary acidic protein mRNA and nerve growth factor mRNA in these cells. Following a single administration of forskolin to cultured astrocytes, suppression of CNTF mRNA was sustained for up to 7 days. A similar down-regulation was observed with the endogenous adrenergic agonists noradrenaline and adrenaline as well as, to a lesser extent, dopamine and adenosine. Down-regulation of CNTF mRNA resulted in a gradual reduction in the level of CNTF protein within the astrocytes. A single addition of forskolin or isoproterenol resulted in a drop in CNTF protein levels to 29 and 52% of control levels respectively after 9 days in vitro, although the rate of turnover of CNTF remained the same. Down-regulation of CNTF mRNA in cultured hippocampal astrocytes by adenylyl cyclase activation was quite specific, as a wide range of growth factors, cytokines and neurotransmitters had little or no effect upon CNTF mRNA levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.