Abstract

IntroductionThe objective of this study was to investigate which genes are regulated by osteogenic protein-1 (OP-1) in human articular chondrocytes using Affimetrix gene array, in order to understand the role of OP-1 in cartilage homeostasis.MethodsChondrocytes enzymatically isolated from 12 normal ankle cartilage samples were cultured in high-density monolayers and either transfected with OP-1 antisense oligonucleotide in the presence of lipofectin or treated with recombinant OP-1 (100 ng/ml) for 48 hours followed by RNA isolation. Gene expression profiles were analyzed by HG-U133A gene chips from Affimetrix. A cut-off was chosen at 1.5-fold difference from controls. Selected gene array results were verified by real-time PCR and by in vitro measures of proteoglycan synthesis and signal transduction.ResultsOP-1 controls cartilage homeostasis on multiple levels including regulation of genes responsible for chondrocyte cytoskeleton (cyclin D, Talin1, and Cyclin M1), matrix production, and other anabolic pathways (transforming growth factor-beta (TGF-β)/ bone morphogenetic protein (BMP), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), genes responsible for bone formation, and so on) as well as regulation of cytokines, neuromediators, and various catabolic pathways responsible for matrix degradation and cell death. In many of these cases, OP-1 modulated the expression of not only the ligands, but also their receptors, mediators of downstream signaling, kinases responsible for an activation of the pathways, binding proteins responsible for the inhibition of the pathways, and transcription factors that induce transcriptional responses.ConclusionsGene array data strongly suggest a critical role of OP-1 in human cartilage homeostasis. OP-1 regulates numerous metabolic pathways that are not only limited to its well-documented anabolic function, but also to its anti-catabolic activity. An understanding of OP-1 function in cartilage will provide strong justification for the application of OP-1 protein as a therapeutic treatment for cartilage regeneration and repair.

Highlights

  • The objective of this study was to investigate which genes are regulated by osteogenic protein-1 (OP-1) in human articular chondrocytes using Affimetrix gene array, in order to understand the role of OP-1 in cartilage homeostasis

  • The goal of the current project was to evaluate the role OP1 plays in regulating human articular cartilage homeostasis by using a gene array approach under conditions where endogenous OP-1 gene expression was inhibited by antisense ODNs ([3]; OP-1AS) or OP-1 signaling was activated and/or enhanced by recombinant OP-1 (rhOP-1)

  • We found that OP-1/bone morphogenetic proteins (BMP)-7 controls numerous metabolic pathways that are not limited to its direct anabolic or anti-catabolic function, and related to cell growth, cell proliferation, differentiation, survival, apoptosis, and death

Read more

Summary

Introduction

The objective of this study was to investigate which genes are regulated by osteogenic protein-1 (OP-1) in human articular chondrocytes using Affimetrix gene array, in order to understand the role of OP-1 in cartilage homeostasis. We used the Affymetrix GeneChip technology to monitor OP-1 regulation of 22,000 genes from the human genome with specific emphasis on genes that are relevant to adult articular cartilage. Those included matrix proteins, anabolic and catabolic gene products, as well as their intracellular regulators and receptors. We found that OP-1/BMP-7 controls numerous metabolic pathways that are not limited to its direct anabolic or anti-catabolic function, and related to cell growth, cell proliferation, differentiation, survival, apoptosis, and death

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.