Abstract

Atherosclerosis is a pathological condition characterized by the accumulation of plaques in the arteries, leading to cardiovascular diseases. The deposition of cholesterol in peripheral cells increases the risk of atherosclerosis. Reverse cholesterol transport (RCT) is essential to reduce the risk of atherosclerosis because it removes excessive cholesterol from the peripheral tissues. ATP-binding cassette transporters such as ABCA1, ABCG1, ABCG5, and ABCG8 are involved in the efflux of cholesterol. The upregulation of these ABC transporters enhances RCT, thereby promoting the removal of excess cholesterol from the body. The expression and activity of ABC transporters are regulated by transcriptional and post-transcriptional mechanisms, as well as by post-translational modifications. In this review, the regulation of ABC transporters by nuclear receptors such as farnesoid X receptor, liver X receptor, retinoid X receptor, retinoic acid receptor, and peroxisome proliferator-activated receptors is discussed. Pharmacological and natural compounds serving as agonists for the nuclear receptors have been identified to elevate the mRNA levels of the transporters. Consequently, it is anticipated that these compounds will attenuate the development of atherosclerosis through stimulation of the ABC transporters, thereby enhancing RCT and fecal cholesterol excretion. Understanding these regulatory processes can aid in the development of therapeutic approaches to prevent atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call