Abstract

The Malpighian (renal) tubule of Drosophila melanogaster is a useful model for studying epithelial transport. The purpose of this study was to identify factors responsible for modulating transepithelial chloride conductance in isolated tubules. I have found that tyrosine and several of its metabolites cause an increase in chloride conductance. The most potent of these agonists is tyramine, which is active at low nanomolar concentrations; the pharmacology of this response matches that of the previously published cloned insect tyramine receptor. In addition, the tubule appears capable of synthesizing tyramine from applied tyrosine, as shown by direct measurement of tyrosine decarboxylase activity. Immunohistochemical staining of tubules with an antibody against tyramine indicates that the principal cells are the sites of tyramine production, whereas previous characterization of the regulation of chloride conductance suggests that tyramine acts on the stellate cells. This is the first demonstration of a physiological role for an insect tyramine receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.