Abstract

Apolipoprotein (apo) B is a major protein component of plasma very low-density and low-density lipoproteins (VLDL and LDL, respectively) and serves as a recognition signal for the cellular binding and internalization of LDL by the apoB/E receptor. In contrast to the situation in mammals, avian apoB is also a component of specialized VLDL particles that are produced by the liver in response to estrogen. These particles transport cholesterol and triglyceride from the liver to the ovary for deposition in egg yolk. We report here the identification and characterization of cDNA clones for chicken apoB and their use in examining the tissue distribution and hormonal regulation of chicken apoB mRNA. The cDNA clones were identified by immunological screening of a phage λgt11 library constructed with hen liver mRNA and their identity was supported by sequence comparisons with mammalian apoB. The chicken apoB mRNA is approximately the same size as mammalian apoB mRNA (14 kb), and, as occurs in mammals, is present at high levels in liver and small intestine. Unlike mammals, the chicken apoB mRNA is also found at high levels in the kidney, consistent with previous protein biosynthetic studies. A DNA-excess solution-hybridization assay was used to quantitate apoB mRNA in these tissues and to examine its hormonal regulation. In control roosters the liver and kidney contained 65% and 10%, respectively, as much apoB mRNA as the small intestine. Within 24 h after estradiol administration, apoB mRNA was increased five- to seven-fold in liver but was unchanged in intestine and kidney. The increase in apoB mRNA content and the kinetics of induction parallel hepatic apoB synthesis, indicating that estrogen regulates apoB production through changes in the cellular abundance of apoB mRNA. The apoB mRNA increased rapidly following hormone treatment while the mRNA for another VLDL protein (apoII) showed a lag or slow phase of several hours before significant mRNA accumulation occurred. These data indicate that the liver can respond immediately to estrogen to increase apoB mRNA accumulation, while apoII mRNA accumulation appears to involve additional events or signals which occur slowly and are specific to this gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.