Abstract

Interferon γ (IFN-γ) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-γ downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-γ and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-γ-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-γ(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. IFN-γ repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-γ and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-γ and NOS2 enhanced serum amounts of tumor necrosis factor α and CXCL10 but repressed CCL3 and CCL4. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.