Abstract

To explore the feasibility of physiological manipulation of autaptic structures, the effects of autaptic connections on an FHN-ML neuronal system with phase noise stimulation are studied systematically. Firstly, according to the dynamic analysis of the FHN-ML neuron model, a saddle-node bifurcation can occur on an invariant circle. Under the action of external oscillatory current with phase noise, the neuronal firing activity is sensitive to phase noise with less intensity, and an appropriate noise intensity can induce a significant stochastic resonance phenomenon. Secondly, the chemical autaptic function can effectively regulate the neuronal discharge activity. An inhibitory autapse can not only induce the transition from depolarized resting to periodic spiking, but can also induce the FHN-ML neuron suppressed by strong phase noise to generate a pronounced intermittent high-level burst-like discharge mode when the autaptic conductance is greater than 0.1. Finally, for a two-dimensional regular FHN-ML neuronal network, a small amount of autaptic structures can induce some special waveforms to restore the propagation of nerve impulses interrupted by phase noise disturbance. This indicates the significant regulation of autapses on spatial patterns of the FHN-ML neuronal network. The study can provide some theoretical guidance for building autaptic structures in local areas to modulate the dynamic behaviors of biological neuronal systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call