Abstract

The debilitating symptoms of cystic fibrosis stem from the reduced Cl- permeability of epithelial cells owing to mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. In cells with normal CFTR channels, receptor-mediated activation of cyclic-AMP-dependent protein kinase causes phosphorylation of several serines in the regulatory domain of CFTR, permitting channel opening and closing via cycles involving ATP hydrolysis. Cellular phosphatases rapidly dephosphorylate the channels, inactivating them. Here we discuss recent advances in our understanding of this complex mechanism for regulating channel gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.