Abstract
Regulated separation of sister chromatids is the key event of mitosis. Sister chromatids remain cohered from the moment of DNA duplication until anaphase. Two known factors account for cohesion: DNA catenations and cohesin complexes. Premature loss of centromeric cohesion is prevented by the spindle checkpoint. Here we show that sororin, a protein implicated in promoting cohesion through effects on cohesin complexes, is involved in maintenance of cohesion in response to the spindle checkpoint. Sororin-depleted cells reach prometaphase with cohered sister chromatids and are able to form metaphase plates. However, loss of cohesion in anaphase is asynchronous and cells are unresponsive to the spindle checkpoint, accumulating with separated sisters scattered throughout the cytoplasm. These phenotypes are similar to those seen after Shugoshin depletion, suggesting that sororin and Shugoshin might act in concert. Furthermore, sororin-depleted and Shugoshin-depleted cells lose cohesion independently of the APC/C. Therefore, sororin and Shugoshin protect centromeric cohesion in response to the spindle checkpoint, but prevent the removal of cohesion by a mechanism independent of the APC/C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.