Abstract

Determination of cell volume by an electronic cell-sizing technique was used to study the role of ion transporters in cell volume regulation by the osteosarcoma cell line UMR-106-01. Swelling the cells in hypotonic medium was followed by regulatory volume decrease (RVD). The rate of RVD was strongly dependent on the subpassage used and increased with increasing subpassages. Swelling-evoked changes in cytosolic free Ca2+ ([Ca2+]i) did not account for this behavior, since it was similar in cells from all subpassages. Increasing plasma membrane K+ permeability with valinomycin resulted in a similar rate of RVD in cells from different subpassages, suggesting increased K+ channel activity or other electrogenic transporter with increased subpassages. In contrast, the mechanisms responsible for regulatory volume increase (RVI) were fully active in cells from all subpassages. Increasing medium osmolarity of cells bathed in isotonic medium induced slow and incomplete RVI. In addition, shrinking cells exposed to hypotonic medium before completion of RVD resulted in impaired RVI. Effective RVI could be observed only after completion of RVD of cells exposed to hypotonic medium. Removal of extracellular Na+ or K+ completely blocked RVI, whereas removal of external Cl- partially blocked RVI. The effect of K+ removal probably reflects in part inhibition of Na-K-2Cl cotransport and in part inhibition of the Na+ pump.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call