Abstract

Alteration of the cell volume of attached fibroblasts with anisosmotic buffers was used to examine the relationship between cell membrane perturbation and intracellular Ca2+ concentration ([Ca2+]i) and to study pathways that may be involved in transducing this response. Human periodontal ligament gingival fibroblasts grown on cover slips were loaded with fura 2-acetoxymethyl ester. The relative cell volume change of single fibroblasts was estimated by measurement of fluorescence intensity at the isosbestic wavelength (356 nm), and [Ca2+]i was calculated from ratiometric fura 2 emission with excitation at 345 and 380 nm. Isotonic buffer (300 mosmol/kgH2O) was substituted with either hypertonic (600 mosmol/kgH2O) or hypotonic (150 mosmol/kgH2O) buffer after baseline recordings. Attached cells exhibited a rapid decrease in cell volume and [Ca2+]i after hypertonic buffer treatment, which was associated with an increase in filamentous actin staining. In contrast, cells treated with hypotonic buffers demonstrated an increase in cell volume (mean approximately 10%), a significant decrease in filamentous actin staining, and a rapid transient elevation in [Ca2+]i (mean approximately 280 nM). This [Ca2+]i rise was significantly inhibited by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, gadolinium ions (P < 0.05), and inhibitors of actin assembly. These results indicate that [Ca2+]i fluxes in response to hypotonic cell swelling in attached fibroblasts are mediated by stretch-activated ion channels and are dependent on actin filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.