Abstract
Vitamin E, the most important lipid-soluble antioxidant, was discovered at the University of California at Berkeley in 1922. Since its discovery, studies of the constituent tocopherols and tocotrienols have focused mainly on their antioxidant properties. In 1991 Angelo Azzi's group (Boscoboinik et al. 1991a,b) first described non-antioxidant cell signalling functions for alpha-tocopherol, demonstrating that vitamin E regulates protein kinase C activity in smooth muscle cells. At the transcriptional level, alpha-tocopherol modulates the expression of the hepatic alpha-tocopherol transfer protein, as well as the expression of liver collagen alphal gene, collagenase gene and alpha-tropomyosin gene. Recently, a tocopherol-dependent transcription factor (tocopherol-associated protein) has been discovered. In cultured cells it has been demonstrated that vitamin E inhibits inflammation, cell adhesion, platelet aggregation and smooth muscle cell proliferation. Recent advances in molecular biology and genomic techniques have led to the discovery of novel vitamin E-sensitive genes and signal transduction pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.