Abstract

Human fragile WWOX gene encodes a tumor suppressor WW domain-containing oxidoreductase (named WWOX, FOR, or WOX1). Functional suppression of WWOX prevents apoptotic cell death induced by a variety of stress stimuli, such as tumor necrosis factor, UV radiation, and chemotherapeutic drug treatment. Loss of WWOX gene expression due to gene deletions, loss of heterozygosity, chromosomal translocations, or epigenetic silencing is frequently observed in human malignant cancer cells. Acquisition of chemoresistance in squamous cell carcinoma, osteosarcoma, and breast cancer cells is associated with WWOX deficiency. WWOX protein physically interacts with many signaling molecules and exerts its regulatory effects on gene transcription and protein stability and subcellular localization to control cell survival, proliferation, differentiation, autophagy, and metabolism. In this review, we provide an overview of the recent advances in understanding the molecular mechanisms by which WWOX regulates cellular functions and stress responses. A potential scenario is that activation of WWOX by anticancer drugs is needed to overcome chemoresistance and trigger cancer cell death, suggesting that WWOX can be regarded as a prognostic marker and a candidate molecule for targeted cancer therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.