Abstract

Lactate has long been credited as a by-product, which jeopardizes cell growth and productivity when accumulated over a certain concentration during the manufacturing process of therapeutic recombinant proteins by Chinese hamster ovary (CHO) cells. A number of efforts to decrease the lactate concentration have been developed; however, the accumulation of lactate is still a critical issue by the late stage of fed-batch culture. Therefore, a lactate-tolerant cell line was developed through over-expression of lactate dehydrogenase C (LDH-C). In fed-batch culture, sodium lactate or sodium pyruvate was supplemented into the culture medium to simulate the environment of lactate accumulation, and LDH-C over-expression increased the highest viable cell density by over 30 and 50%, respectively, on day 5, meanwhile the viability was also improved significantly since day 5 compared with that of the control. The percentages of cells suffering early and late apoptosis decreased by 3.2 to 12.5 and 2.0 to 4.3%, respectively, from day 6 onwards in the fed-batch culture when 40mM sodium pyruvate was added compared to the control. The results were confirmed by mitochondrial membrane potential assay. In addition, the expression of cleaved caspases 3 and 7 decreased in cells over-expressing LDH-C, suggesting the mitochondrial pathway was involved in the LDH-C regulated anti-apoptosis. In conclusion, a novel cell line with higher lactate tolerance, lowered lactate production, and alleviated apoptosis response was developed by over-expression of LDH-C, which may potentially represent an efficient and labor-saving approach in generating recombinant proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.