Abstract

Recent developments in the apoptosis field have uncovered a family of cysteine proteases, the Caspases, that act as signalling components as well as effectors of the cell death machinery. Caspases are constitutively present as inactive precursors within most cells and undergo proteolytic processing in response to diverse death-inducing stimuli to initiate the death programme. Active caspases can process other caspases of the same type as well as process caspases further downstream in the pathway that ultimately leads to collapse of the cell. This cellular collapse is thought to occur as a consequence of caspase-mediated cleavage of a diverse array of cellular substrates. Regulation of entry into the death programme is controlled at a number of levels by members of the Bcl-2 family, as well as by other cell death regulatory proteins. Recent data has shed light upon the mechanism of action of these regulatory molecules and suggests that the point of caspase activation is a major checkpoint in the cell death programme. Because many transformed cell populations possess derangements in cell death-regulatory genes, such as bcl-2, such cells frequently exhibit elevated resistance to cytotoxic chemotherapy. Thus, a deeper understanding of how apoptosis is normally regulated has therapeutic implications for disease states where the normal controls on the cell death machinery have been subverted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call