Abstract

Cytotoxicity to renal tubular epithelial cells (RTE) is dependent on the relative response of cell survival and cell death signals triggered by the injury. Forkhead transcription factors, Bcl-2 family member Bad, and mitogen-activated protein kinases are regulated by phosphorylation that plays crucial roles in determining cell fate. We examined the role of phosphorylation of these proteins in regulation of H(2)O(2)-induced caspase activation in RTE. The phosphorylation of FKHR, FKHRL, and Bcl-2 family member Bad was markedly increased in response to oxidant injury, and this increase was associated with elevated levels of basal phosphorylation of Akt/protein kinase B. Phosphoinositol (PI) 3-kinase inhibitors abolished this phosphorylation and also decreased expression of antiapoptotic proteins Bcl-2 and BclxL. Inhibition of phosphorylation of forkhead proteins resulted in a marked increase in the proapoptotic protein Bim. These downstream effects of PI 3-kinase inhibition promoted the oxidant-induced activation of caspase-3 and -9, but not caspase-8 and -1. The impact of enhanced activation of caspases by PI 3-kinase inhibition was reflected on accelerated oxidant-induced cell death. Oxidant stress also induced marked phosphorylation of ERK1/2, P38, and JNK kinases. Inhibition of ERK1/2 phosphorylation but not P38 and JNK kinase increased caspase-3 and -9 activation; however, this activation was far less than induced by inhibition of Akt phosphorylation. Thus the Akt-mediated phosphorylation pathway, ERK signaling, and the antiapoptotic Bcl-2 proteins distinctly regulate caspase activation during oxidant injury to RTE. These studies suggest that enhancing renal-specific survival signals may lead to preservation of renal function during oxidant injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.