Abstract

Microalgae are one of the promising sources for renewable energy production, and the light intensity variation can affect the biofuel generation and carbon assimilation of mixotrophic microalgae. To reveal the response of carbon assimilation to light intensity, the effect of light intensity on the carbon source metabolism of Chlorella vulgaris under mixotrophic cultivation was investigated in this study. Moreover, the optimal carbon source composition for mixotrophic microalgae cultivation was evaluated using bicarbonate (HCO3−) and carbonate (CO32−) as inorganic carbon sources, and glucose and acetate as organic carbon sources. The optimal light intensity for Chlorella vulgaris growth was at the range of 8000–12000 lux. For the accumulation of biochemical components, low light intensity was beneficial to protein accumulation, and high light intensity was advantageous for carbohydrate and lipid accumulation. With HCO3− and glucose, the maximum lipid content reached 37.0% at a light intensity of 12000 lux. The citrate synthase activity was negatively correlated with light intensity, showing an opposite trend to biomass production. High light intensity had a positive impact on Rubisco expression, which promoted the microalgae growth and carbon fixing. The energy produced by heterotrophic metabolic activities increased at low light intensity, and the enhancement of biomass production with high light intensity was mainly caused by the improved photoreaction efficiency during the mixotrophic cultivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.