Abstract

The assimilation of NH(4) (+) causes a rapid increase in respiration to provided carbon skeletons for amino acid synthesis. In this study we propose a model for the regulation of carbon partitioning from starch to respiration and N assimilation in the green alga Selenastrum minutum. We provide evidence for both a cytosolic and plastidic fructose-1,6-bisphosphatase. The cytosolic form is inhibited by AMP and fructose-1,6-bisphosphate and the plastidic form is inhibited by phosphate. There is only one ATP dependent phosphofructokinase which, based on immunological cross reactivity, has been identified as being localized in the plastid. It is inhibited by phosphoenolpyruvate and activated by phosphate. No pyrophosphate dependent phosphofructokinase was found. The initiation of dark ammonium assimilation resulted in a transient increase in ADP which releases pyruvate kinase from adenylate control. This activation of pyruvate kinase causes a rapid 80% drop in phosphoenolpyruvate and a 2.7-fold increase in pyruvate. The pyruvate kinase mediated decrease in phosphoenolpyruvate correlates with the activation of the ATP dependent phosphofructokinase increasing carbon flow through the upper half of glycolysis. This increased the concentration of triosephosphate and provided substrate for pyruvate kinase. It is suggested that this increase in triosephosphate coupled with the glutamine synthetase mediated decline in glutamate, serves to maintain pyruvate kinase activation once ADP levels recover. The initiation of NH(4) (+) assimilation causes a transient 60% increase in fructose-2,6-bisphosphate. Given the sensitivity of the cytosolic fructose-1,6-bisphosphatase to this regulator, its increase would serve to inhibit cytosolic gluconeogenesis and direct the triosephosphate exported from the plastid down glycolysis to amino acid biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call