Abstract

Many biologically formed calcite crystals contain intracrystalline macromolecules. The ways in which they interact with growing calcite crystals were evaluated by monitoring changes in the morphology of calcite crystals grown in vitro in their presence. Macromolecules were extracted from within isolated prisms from the prismatic layer of the shell of the mollusk Atrina rigida and from spines of the sea urchin Paracentrotus lividus. Two modes of interaction were identified; the interaction of highly acidic proteins with calcite planes perpendicular to the c crystallographic axis and the interaction of glycoproteins with planes roughly parallel to the c axis. By different preparative procedures we demonstrated that the polysaccharide moieties of the sea urchin spine glycoproteins are directly involved in the latter mode of interactions. We suggest that organisms utilize the abilities of these macromolecules to interact in different ways with calcite crystals, and in so doing fine-tune aspects of the control of crystal growth in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.