Abstract

Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr protein phosphatase that dephosphorylates and regulates multifunctional Ca2+/calmodulin-dependent protein kinases. Although CaMKP is known to be activated by phosphorylation with CaMKII and stimulated by the addition of polycations such as poly-l-lysine, detailed mechanisms of regulation of CaMKP in vivo still remain unclear. In the present study, we found that CaMKP is regulated by oxidation/reduction at Cys residue(s). When CaMKP was incubated with H2O2, time- and dose-dependent inactivation of the enzyme was observed. This inactivation was restored when the inactivated CaMKP was treated with a reducing agent such as 2-mercaptoethanol. Since there are three Cys residues (Cys-259, Cys-315, and Cys-359) in human CaMKP (hCaMKP), we produced three point mutants of hCaMKP, CaMKP(C259S), CaMKP(C315S), and CaMKP(C359S), of which the Cys residues were replaced by Ser residues. Among these Cys-substituted mutants, only CaMKP(C359S) exhibited significant tolerance against oxidation by H2O2. Incubation of CaMKP with H2O2 led to formation of disulfide bond between Cys-359 and Cys-259/Cys-315, resulting in the inactivation of the enzyme. These results suggest that hCaMKP activity is reversibly regulated by oxidation/reduction at Cys-359.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.